Enhanced Transport Capabilities via Nanotechnologies: Impacting Bioefficacy, Controlled Release Strategies, and Novel Chaperones

نویسندگان

  • Thomai Panagiotou
  • Robert J. Fisher
چکیده

Emerging nanotechnologies have, and will continue to have, a major impact on the pharmaceutical industry. Their influence on a drug's life cycle, inception to delivery, is rapidly expanding. As the industry moves more aggressively toward continuous manufacturing modes, utilizing Process Analytical Technology (PAT) and Process Intensification (PI) concepts, the critical role of transport phenomena becomes elucidated. The ability to transfer energy, mass, and momentum with directed purposeful outcomes is a worthwhile endeavor in establishing higher production rates more economically. Furthermore, the ability to obtain desired drug properties, such as size, habit, and morphology, through novel manufacturing strategies permits unique formulation control for optimum delivery methodologies. Bottom-up processing to obtain nano-sized crystals is an excellent example. Formulation and delivery are intimately coupled in improving bio-efficacy at reduced loading and/or better controlled release capabilities, minimizing side affects and providing improved therapeutic interventions. Innovative nanotechnology applications, such as simultaneous targeting, imaging and delivery to tumors, are now possible through use of novel chaperones. Other examples include nanoparticles attachment to T-cells, release from novel hydrogel implants, and functionalized encapsulants. Difficult tasks such as drug delivery to the brain via the blood brain barrier and/or the cerebrospinal fluid are now easier to accomplish.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Comparative Evaluation of In-vitro Drug Release, Pharmacokinetics and Gamma Scintigraphic Analysis of Controlled Release Tablets Using Novel pH Sensitive Starch and Modified Starchacrylate Graft Copolymer Matrices

The present investigation deals with the development of controlled release tablets of salbutamol sulphate using graft copolymers (St-g-PMMA and Ast-g-PMMA) of starch and acetylated starch. Drug excipient compatibility was spectroscopically analyzed via FT-IR, which confirmed no interaction between drug and other excipients. Formulations were evaluated for physical characteristics like hardness,...

متن کامل

Design and Comparative Evaluation of In-vitro Drug Release, Pharmacokinetics and Gamma Scintigraphic Analysis of Controlled Release Tablets Using Novel pH Sensitive Starch and Modified Starchacrylate Graft Copolymer Matrices

The present investigation deals with the development of controlled release tablets of salbutamol sulphate using graft copolymers (St-g-PMMA and Ast-g-PMMA) of starch and acetylated starch. Drug excipient compatibility was spectroscopically analyzed via FT-IR, which confirmed no interaction between drug and other excipients. Formulations were evaluated for physical characteristics like hardness,...

متن کامل

Design and Optimization of Novel Sugar Alcohol Based Extended Release Tablets Prepared by Melt Dispersion Technique

     The aim of this study is to prepare novel sorbitol based extended release tablets by melt dispersion method using carbamazepine as a model drug. Carbamazepine was melted along with sugar alcohol to get melt dispersion granules (MGDs) and was characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (XRD) and solubility study. The physical and chemical parameters...

متن کامل

Review on nano-drugs

Nano materials is a new type of drug carriers with very promising application. In recent years, great progress was achieved in making drugs own the characteristics of targeted and controlled release via nanotechnologies. This paper addressed the capability of nano drugs on targeting to cells, penetrating through epicyte, controlled release and the security issues resulting from its using. We ga...

متن کامل

Magnetic nanoparticles grafted pH-responsive poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone as a nano-carrier for oral controlled delivery of atorvastatin

Objective(s): Researchers have intended to reformulate drugs so that they may be more safely used in human body. Polymer science and nanotechnology have great roles in this field. The aim of this paper is to introduce an efficient drug delivery vehicle which can perform both targeted and controlled antibiotic release using magnetic nanoparticles grafted pH-responsive polymer.<s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011